Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38675157

RESUMEN

Betulinic acid (BA) is a natural pentacyclic triterpene with diverse biological activities. However, its low water solubility limits its pharmaceutical application. The conversion of pharmaceutically active molecules into ionic liquids (ILs) is a promising strategy to improve their physicochemical properties, stability, and/or potency. Here, we report the synthesis and characterization of 15 novel ILs containing a cation ethyl ester of a polar, non-polar, or charged amino acid [AAOEt] and an anion BA. Except for [ValOEt][BA], we observed preserved or up to 2-fold enhanced cytotoxicity toward hormone-dependent breast cancer cells MCF-7. The estimated IC50 (72 h) values within the series varied between 4.8 and 25.7 µM. We found that the most cytotoxic IL, [LysOEt][BA]2, reduced clonogenic efficiency to 20% compared to that of BA. In addition, we evaluated the effect of a 72 h treatment with BA or [LysOEt][BA]2, the most cytotoxic compound, on the thermodynamic behavior of MCF-7 cells. Based on our data, we suggest that the charged amino acid lysine included in the novel ILs provokes cytotoxicity by a mechanism involving alteration in membrane lipid organization, which could be accompanied by modulation of the visco-elastic properties of the cytoplasm.

2.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37958615

RESUMEN

This study investigated the impact of various enhancers on permeation through the skin and accumulation in the skin from acrylic pressure-sensitive adhesive-based drug-in-adhesives matrix-type transdermal patches. Eleven patches, each containing a 5% enhancer of permeation, encompassing compounds such as salicylic acid, menthol, urea, glycolic acid, allantoin, oleic acid, Tween 80, linolenic acid, camphor, N-dodecylcaprolactam, and glycerin, were developed. Ibuprofen (IBU) was the model active substance, a widely-used non-steroidal anti-inflammatory drug. The results were compared to patches without enhancers and commercial preparations. The study aimed to assess the effect of enhancers on IBU permeability. The adhesive properties of the patches were characterised, and active substance permeability was tested. The findings revealed that patches with 5% allantoin exhibited the highest IBU permeability, approximately 2.8 times greater than patches without enhancers after 24 h. These patches present a potential alternative to commercial preparations, highlighting the significant impact of enhancers on transdermal drug delivery efficiency.


Asunto(s)
Alantoína , Ibuprofeno , Ibuprofeno/farmacología , Alantoína/metabolismo , Administración Cutánea , Piel/metabolismo , Absorción Cutánea , Adhesivos/metabolismo
3.
Molecules ; 28(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005244

RESUMEN

This research presents novel ibuprofen derivatives in the form of alkyl ester salts of L-amino acids with potential analgesic, anti-inflammatory, and antipyretic properties for potential use in transdermal therapeutic systems. New derivatives of (RS)-2-[4-(2-methylpropyl)phenyl]propionic acid were synthesized using hydrochlorides of alkyl esters (ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, and pentyl) of L-glutamine. These were further transformed into alkyl esters of L-amino acid ibuprofenates through neutralization and protonation reactions. Characterization involved spectroscopic methods, including nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Various physicochemical properties were investigated, such as UV-Vis spectroscopy, polarimetric analysis, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, water solubility, octanol/water partition coefficient, and permeability through pig skin using Franz diffusion cells. The research confirmed the ionic structure of the obtained hydrochlorides of alkyl esters of L-amino acids and ibuprofenates of alkyl esters of L-glutamic acid. It revealed significant correlations between ester chain length and thermal stability, crystallinity, phase transition temperatures, lipophilicity, water solubility, skin permeability, and skin accumulation of these compounds. Compared to the parent ibuprofen, the synthesized derivatives exhibited higher water solubility, lower lipophilicity, and enhanced skin permeability. This study introduces promising ibuprofen derivatives with improved physicochemical properties, highlighting their potential for transdermal therapeutic applications. The findings shed light on the structure-activity relationships of these derivatives, offering insights into their enhanced solubility and skin permeation, which could lead to more effective topical treatments for pain and inflammation.


Asunto(s)
Ibuprofeno , Sales (Química) , Animales , Porcinos , Ibuprofeno/química , Sales (Química)/farmacología , Ésteres/química , Administración Cutánea , Piel , Solubilidad , Aminoácidos/farmacología , Permeabilidad , Agua/farmacología
4.
Front Pharmacol ; 14: 1157977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324484

RESUMEN

In the treatment of pain, especially chronic pain, the rule of multimodal therapy applies, based on various painkillers mechanisms of action. The aim of the conducted study was to evaluate the in vitro penetration of ketoprofen (KET) and lidocaine hydrochloride (LH) through the human skin from a vehicle with transdermal properties. The results obtained with the use of the Franz chamber showed statistically significantly higher penetration of KET from the transdermal vehicle as compared to commercial preparations. It was also shown that the addition of LH to the transdermal vehicle did not change the amount of KET permeated. The study also compared the penetration of KET and LH by adding various excipients to the transdermal vehicle. Comparing the cumulative mass of KET that penetrated after the 24-h study, it was observed that the significantly highest permeation was found for the vehicle containing additionally Tinctura capsici, then for that containing camphor and ethanol, and the vehicle containing menthol and ethanol as compared to that containing Pentravan® alone. A similar tendency was observed in the case of LH, where the addition of Tinctura capsici, menthol and camphor led to a statistically significant higher penetration. Adding certain drugs such as KET and LH to Pentravan®, and substances such as menthol, camphor or capsaicin, can be an interesting alternative to administered enteral drugs especially in the group of patients with multiple diseases and polypragmasy.

5.
Eur J Pharm Biopharm ; 188: 15-25, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37164233

RESUMEN

A method of increasing the permeability of ibuprofen through the skin using a rotating magnetic field (RMF) is presented. This study evaluated whether 50 Hz RMF modifies ibuprofen's permeability through the skin. Ibuprofen and its structural modifications in the form of ibuprofenates of isopropyl esters of L-amino acids such as L-valine, L-phenylalanine, L-proline, and L-aspartic acid were used in the research. To this end, Franz cells with skin as membrane were exposed to 50 Hz RMF with 5% ibuprofen and its derivatives in an ethanol solution for 48 h. Following the exposures, the amount of penetrated compound was analysed. Regardless of the compound tested, a significant increase in drug transport through the skin was observed. The differences in the first 30 min of permeation are particularly noticeable. Furthermore, it was shown that using RMF increases the permeability of ibuprofen from 4 to 244 times compared to the test without the RMF. The greatest differences were observed for unmodified ibuprofen. However, it is noteworthy that the largest amounts of the active substance were obtained with selected modifications and exposure to RMF. The RMF may be an innovative and interesting technology that increases the penetration of anti-inflammatory and anti-ache drugs through the skin.


Asunto(s)
Antiinflamatorios no Esteroideos , Ibuprofeno , Ibuprofeno/química , Antiinflamatorios no Esteroideos/química , Aminoácidos , Campos Electromagnéticos , Absorción Cutánea , Administración Cutánea
6.
Gels ; 9(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37232983

RESUMEN

The aim of this study was to evaluate the effect of vehicle and chemical modifications of the structure of active compounds on the skin permeation and accumulation of ibuprofen (IBU). As a result, semi-solid formulations in the form of an emulsion-based gel loaded with ibuprofen and its derivatives, such as sodium ibuprofenate (IBUNa) and L-phenylalanine ethyl ester ibuprofenate ([PheOEt][IBU]), were developed. The properties of the obtained formulations were examined, including density, refractive index, viscosity, and particle size distribution. The parameters of release and permeability through the pig skin of the active substances contained in the obtained semi-solid formulations were determined. The results indicate that an emulsion-based gel enhanced the skin penetration of IBU and its derivatives compared to two commercial preparations in the form of a gel and a cream. The average cumulative mass of IBU after a 24 h permeation test from an emulsion-based gel formulation through human skin was 1.6-4.0 times higher than for the commercial products. Ibuprofen derivatives were evaluated as chemical penetration enhancers. After 24 h of penetration, the cumulative mass was 1086.6 ± 245.8 for IBUNa and 948.6 ± 87.5 µg IBU/cm2 for [PheOEt][IBU], respectively. This study demonstrates the perspective of the transdermal emulsion-based gel vehicle in conjunction with the modification of the drug as a potentially faster drug delivery system.

7.
Front Bioeng Biotechnol ; 11: 1133345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890919

RESUMEN

Epilobium angustifolium L. is a medicinal plant well known for its anti-inflammatory, antibacterial, antioxidant, and anticancer properties related to its high polyphenols content. In the present study, we evaluated the antiproliferative properties of ethanolic extract of E. angustifolium (EAE) against normal human fibroblasts (HDF) and selected cancer cell lines, including melanoma (A375), breast (MCF7), colon (HT-29), lung (A549) and liver (HepG2). Next, bacterial cellulose (BC) membranes were applied as a matrix for the controlled delivery of the plant extract (BC-EAE) and characterized by thermogravimetry (TG), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) images. In addition, EAE loading and kinetic release were defined. Finally, the anticancer activity of BC-EAE was evaluated against the HT-29 cell line, which presented the highest sensitivity to the tested plant extract (IC50 = 61.73 ± 6.42 µM). Our study confirmed the biocompatibility of empty BC and the dose and time-dependent cytotoxicity of the released EAE. The plant extract released from BC-2.5%EAE significantly reduced cell viability to 18.16% and 6.15% of the control values and increased number apoptotic/dead cells up to 37.53% and 66.90% after 48 and 72 h of treatment, respectively. In conclusion, our study has shown that BC membranes could be used as a carrier for the delivery of higher doses of anticancer compounds released in a sustained manner in the target tissue.

8.
Eur J Pharm Biopharm ; 185: 183-189, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36905969

RESUMEN

The paper presents a method of increasing the permeability of various active substances through the skin by means of a rotating magnetic field. The study used 50 Hz RMF and various active pharmaceutical ingredients (APIs) such as caffeine, ibuprofen, naproxen, ketoprofen, and paracetamol. Various concentrations of active substance solutions in ethanol were used in the research, corresponding to those in commercial preparations. Each experiment was conducted for 24 h. It was shown that, regardless of the active compound used, an increase in drug transport through the skin was observed with RMF exposure. Furthermore, the release profiles depended on the active substance used. Exposure to a rotating magnetic field has been shown to effectively increase the permeability of an active substance through the skin.


Asunto(s)
Cetoprofeno , Piel , Permeabilidad , Campos Magnéticos , Preparaciones Farmacéuticas , Administración Cutánea
9.
Polymers (Basel) ; 15(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36850208

RESUMEN

A series of UV-curable urethane (meth)acrylates were obtained by copolymerization of the Diels-Alder adduct (HODA), isophorone diisocyanate, PEG1000, and various hydroxy (meth)acrylates. The aim of the present work was to determine the influence of the chemical structure of the introduced (meth)acrylic groups, i.e., hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and hydroxypropyl methacrylate, on the UV-curing process and self-healing properties of cured coatings. The chemical structure of prepolymers was characterized by FTIR and NMR spectroscopy, whereas the UV-curing process was monitored in real time using FTIR and photo-DSC. In turn, the self-healing properties were characterized in relation to the thermally reversible mechanism, which was tested using the following methods: an FTIR spectroscope equipped with a heating attachment; DSC and TG apparatus; and an optical microscope equipped with a stage with programmable heating. The result of comprehensive research on the self-healing of photocurable coatings in the context of the presence of various photoreactive groups and the course of the curing process allows one to control the self-healing process by reducing the effective healing temperature. The self-healing properties, taken together with the fast UV curing of the coatings and excellent properties of cured coatings, make the material attractive for a variety of applications, in particular in cases where coatings are not repaired, e.g., for economic reasons or when it is not possible, such as in flexible electronic screens, car paint film, and aircraft interior finishes.

10.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555232

RESUMEN

A series of difunctional epoxy methacrylate resins (EAs) containing at least one epoxy and at least one methacrylate group were synthesized by means of an addition reaction between epoxy-terminated diglycidyl ethers and methacrylic acid. In order to investigate the impact of polymer architecture on the course of addition reactions and further coating properties, several different types of diglycidyl ethers, i.e., linear, containing aliphatic or aromatic rings, with a short or polymeric backbone, were employed in the synthesis. The carboxyl-epoxide addition esterification reactions have been found to, in a relatively straightforward manner, control the extent of acrylation depending on the substrate feed ratio and reaction time. The structure of obtained pre-polymers was evaluated by FT-IR and NMR methods. At the same time, the extent of addition reactions was validated via quantitative analysis, including non-volatile matter content (NV), acid value (PAVs), and epoxy equivalent value (EE) analysis. The modification was carried out in a manner likely to create a compound with one epoxy and one carbon-carbon pendant group. Hence, due to the presence of both functionalities, it is possible to crosslink compositions based on synthesized EAs via two distinct mechanisms: (i) cationic polymerization or (ii) free-radical polymerization. Synthesized epoxy methacrylate pre-polymers were further employed for use in formulate photocurable coating compositions by the cationic or radical process. Furthermore, the photopolymerization behavior and properties of cured coatings were explored regarding some structural factors and parameters. The investigated polymeric materials cure in a short time to obtain coatings with good properties, which is why they can be successfully used to produce protective and decorative coatings for many industries.


Asunto(s)
Resinas Epoxi , Metacrilatos , Resinas Epoxi/química , Espectroscopía Infrarroja por Transformada de Fourier , Metacrilatos/química , Polímeros/química , Radicales Libres/química , Éteres/química
11.
RSC Adv ; 12(55): 35779-35792, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36545107

RESUMEN

This study aimed to evaluate the effect of introducing structural modification of ibuprofen in the form of an ion pair on the permeability of ibuprofen through the skin and the properties of the adhesive layer of the medical patch produced. The active substances tested were the salts of ibuprofen obtained by pairing the anion of ibuprofen with organic cations such as propyl esters of amino acids such as tyrosine, tryptophan, histidine, or phenylalanine. For comparison, the penetration of unmodified ibuprofen and commercially available patches was also tested. Acrylate copolymers based on isobornyl methacrylate as a biocomponent and a monomer increasing the T g ("hard") were used to produce the adhesive layer of transdermal patches. The obtained patches were characterized in terms of adhesive properties and tested for the permeability of the active ingredient and the permeability of the active ingredient through the skin. This study demonstrates the possibility of developing acrylic-based photoreactive transdermal patches that contain biocomponents that can deliver a therapeutically appropriate dose of ibuprofen.

12.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430346

RESUMEN

New derivatives of non-steroidal anti-inflammatory drugs were synthesized via conjugation with L-amino acid isopropyl esters. The characteristics of the physicochemical properties of the obtained pharmaceutically active ionic liquids were determined. It has been shown how the incorporation of various L-amino acid esters as an ion pair affects the properties of the parent drug. Moreover, the antimicrobial activity of the obtained compounds was evaluated. The proposed structural modifications of commonly used drugs indicate great potential for use in topical and transdermal preparations.


Asunto(s)
Antiinfecciosos , Líquidos Iónicos , Líquidos Iónicos/química , Ésteres/farmacología , Aminoácidos/química , Sistemas de Liberación de Medicamentos , Excipientes , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química
14.
Front Pharmacol ; 13: 896706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846995

RESUMEN

Epilobium angustifolium L. is an ethnomedicinal plant known as a medicinal plant in many regions of the world, among others, in various skin diseases. Despite the great interest in this plant, there are still few reports of biological activity of ready-made dermatological or cosmetical preparations containing the E. angustifolium extracts. The antioxidant, anti-ageing, anti-inflammatory, antibacterial properties and toxicity, wound healing, and skin permeation of topical hydrogels containing E. angustifolium extracts (HEas) was assessed. First, the plant extracts were prepared using three solvents: 70% (v/v) ethanol, 70% (v/v) isopropanol and water, next by preparing hydrogels witch by dry extracts (HEa-EtOH), (HEa-iPrOH) and (HEa-WA), respectively. Finally, the content of selected phenolic acids in the HEas was evaluated by high-performance liquid chromatography (HPLC). All the HEas were characterized by high antioxidant activity. The most increased antibacterial activity was observed for a strain of Streptococcus pneumoniae ATCC 49619, Escherichia coli, Enterococcus faecalis ATCC 29212, Enterococcus faecium, Sarcina lutea ATCC 9341 and Bacillus pseudomycoides, while the strains of Streptococcus epidermidis, Bacillus subtilis, and Staphylococcus aureus were the least sensitive. All the HEas showed a reduction in the activity of lipoxygenase enzymes, proteases, and inhibition of protein denaturation. The HEa-EtOH and HEa-iPrOH also enhanced the wound healing activity of HDF cells. Additionally, in vitro penetration studies were performed using the Franz diffusion cells. These studies showed that the active ingredients contained in E. angustifolium penetrate through human skin and accumulate in it. Furthermore, the hydrogels containing E. angustifolium extracts showed a broad spectrum of activity. Therefore, they can be considered as an interesting alternative for dermatologic and cosmetic preparations.

15.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35887099

RESUMEN

This study aimed to evaluate the effect of chemical modifications of the structure of active compounds on the skin permeation and accumulation of ibuprofen [IBU] from the acrylic pressure-sensitive adhesive used as a drug-in-adhesives matrix type transdermal patch. The active substances tested were ibuprofen salts obtained by pairing the ibuprofen anion with organic cations, such as amino acid isopropyl esters. The structural modification of ibuprofen tested were Ibuprofen sodium salt, [GlyOiPr][IBU], [AlaOiPr][IBU], [ValOiPr][IBU], [SerOiPr][IBU], [ThrOiPr][IBU], [(AspOiPr)2][IBU], [LysOiPr][IBU], [LysOiPr][IBU]2, [PheOiPr][IBU], and [ProOiPr][IBU]. For comparison, the penetration of unmodified ibuprofen and commercially available patches was also investigated. Thus, twelve transdermal patches with new drug modifications have been developed whose adhesive carrier is an acrylate copolymer. The obtained patches were characterized for their adhesive properties and tested for permeability of the active substance. Our results show that the obtained ibuprofen patches demonstrate similar permeability to commercial patches compared to those with structural modifications of ibuprofen. However, these modified patches show an increased drug permeability of 2.3 to even 6.4 times greater than unmodified ibuprofen. Increasing the permeability of the active substance and properties such as adhesion, cohesion, and tack make the obtained patches an excellent alternative to commercial patches containing ibuprofen.


Asunto(s)
Ibuprofeno , Parche Transdérmico , Adhesivos/química , Administración Cutánea , Ibuprofeno/química , Polímeros/química , Piel/metabolismo
16.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456976

RESUMEN

Modifications of (RS)-2-[4-(2-methylpropyl)phenyl] propanoic acid with amino acid isopropyl esters were synthesised using different methods via a common intermediate. The main reaction was the esterification of the carboxyl group of amino acids with isopropanol and chlorination of the amino group of the amino acid, followed by an exchange or neutralisation reaction and protonation. All of the proposed methods were very efficient, and the compounds obtained have great potential to be more effective drugs with increased skin permeability compared with ibuprofen. In addition, it was shown how the introduction of a modification in the form of an ion pair affects the properties of the obtained compound.


Asunto(s)
Ésteres , Absorción Cutánea , Administración Cutánea , Aminoácidos/metabolismo , Ésteres/química , Permeabilidad , Piel/metabolismo
17.
Pharmaceutics ; 13(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34959392

RESUMEN

The paper presents the synthesis, full identification, and characterization of new salts-L-proline alkyl ester naproxenates [ProOR][NAP], where R was a chain from ethyl to butyl (including isopropyl). All obtained compounds were characterized by Nuclear Magnetic Resonance (NMR), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffractometry (XRD), and in vitro dissolution studies. The specific rotation, phase transition temperatures (melting point), and thermal stability were also determined. In addition, their lipophilicity, permeability, and accumulation in pigskin were determined. Finally, toxicity against mouse L929 fibroblast cells was tested. The obtained naproxen derivatives showed improved solubility and higher absorption of drug molecules by biological membranes. Their lipophilicity was lower and increased with the increase in the alkyl chain of the ester. The derivative with isopropyl ester had the best permeability through pigskin. The use of L-proline isopropyl ester naproxenate increased the permeation of naproxen through the skin almost four-fold. It was also shown that the increase in permeability is not associated with additional risk: all compounds had a similar effect on cell viability as the parent naproxen.

18.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885770

RESUMEN

Epilobium angustifolium L. is a popular medicinal plant found in many regions of the world. This plant contains small amounts of essential oil whose composition and properties have not been extensively investigated. There are few reports in the literature on the antioxidant and antifungal properties of this essential oil and the possibility of applying it as a potential promoter of the skin penetration of drugs. The essential oil was obtained by distillation using a Clavenger type apparatus. The chemical composition was analyzed by the GC-MS method. The major active compounds of E. angustifolium L. essential oil (EOEa) were terpenes, including α-caryophyllene oxide, eucalyptol, ß-linalool, camphor, (S)-carvone, and ß-caryophyllene. The analyzed essential oil was also characterized by antioxidant activity amounting to 78% RSA (Radical Scavenging Activity). Antifungal activity against the strains Aspergillus niger, A. ochraceus, A. parasiticum, and Penicillium cyclopium was also determined. The largest inhibition zone was observed for strains from the Aspergillus group. The EOEa enhanced the percutaneous penetration of ibuprofen and lidocaine. After a 24 h test, the content of terpene in the skin and the acceptor fluid was examined. It has been shown that the main compounds contained in the essential oil do not penetrate through the skin, but accumulate in it. Additionally, FTIR-ATR analysis showed a disturbance of the stratum corneum (SC) lipids caused by the essential oil application. Due to its rich composition and high biological activity, EOEa may be a potential candidate to be applied, for example, in the pharmaceutical or cosmetic industries. Moreover, due to the reaction of the essential oil components with SC lipids, the EOEa could be an effective permeation enhancer of topically applied hydrophilic and lipophilic drugs.


Asunto(s)
Epilobium/química , Micosis/tratamiento farmacológico , Aceites Volátiles/química , Extractos Vegetales/química , Antifúngicos/química , Antifúngicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Aspergillus/efectos de los fármacos , Aspergillus/patogenicidad , Cromatografía de Gases y Espectrometría de Masas , Humanos , Micosis/microbiología , Aceites Volátiles/farmacología , Penicillium/efectos de los fármacos , Penicillium/patogenicidad , Extractos Vegetales/farmacología , Plantas Medicinales/química , Piel/efectos de los fármacos , Absorción Cutánea/efectos de los fármacos , Terpenos/química , Terpenos/farmacología
19.
Molecules ; 26(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34946745

RESUMEN

This work involves the synthesis of hybrid oligomers based on the epoxy methacrylate resin. The EA resin was obtained by the modification of industrial-grade bisphenol A-based epoxy resin and methacrylic acid has been synthesized in order to develop multifunctional resins comprising both epoxide group and reactive, terminal unsaturation. Owing to the presence of both epoxy and double carbon-carbon pendant groups, the reaction product exhibits photocrosslinking via two distinct mechanisms: (i) cationic ring-opening polymerization and (ii) free radical polymerization. Monitoring of EA synthesis reactions over time using PAVs, MAAC and NV parameters, and the FT-IR method reveals that esterification reactions proceed faster at the start, exhibiting over 40% of conversion within the initial 60 min, which can be associated with a relatively high concentration of reactive sites and low viscosity of the reaction mixture at the initial reaction stage. With the further increase in the reaction time, the reaction rate tends to decrease. The control of the EA synthesis process can guide how to adjust reactions to obtain EAs with desired characteristics. Based on obtained values, one can state that the optimum synthesis time of about 4-5 h should be adopted to prepare EAs having both epoxy groups and unsaturated double bonds. The structure of the obtained EA was confirmed by FT-IR and NMR methods, as well as the determination of partial acid value and epoxy equivalent. Samples at various stages of synthesis were cured with UV radiation in order to study the kinetics of the process according to cationic and radical polymerization determined via photo-differential scanning calorimetry (photo-DSC) and real-time infrared spectroscopy (RT-IR) and then the properties of the cured coatings were tested. It turned out that the cationic polymerization was slower with a lower conversion of the photoreactive groups, as compared to the radical polymerization. All the obtained EA coatings were characterized by good properties of cured coatings and can be successfully used in the coating-forming sector.

20.
Materials (Basel) ; 14(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34832210

RESUMEN

The effect of transdermal vehicle (Pentravan®) on skin permeability was examined for unmodified ibuprofen (IBU) and ion pairs of ibuprofen with new L-valine alkyl esters [ValOR][IBU]. The percutaneous permeation across the human skin and transdermal diffusion test model (Strat-M® membranes) of ibuprofen and its structural modification were measured and compared using Franz diffusion cells. For comparison, the penetration of ibuprofen from a commercial product was also investigated. The cumulative amount of drug permeated through human skin at the end of the 24 h study was highest for ibuprofen derivatives containing propyl (C3), isopropyl (C3), ethyl (C2), and butyl (C4) esters. For Strat-M®, the best results were obtained with the alkyl chain length of the ester from C2 to C5. The permeation profiles and parameters were appointed, such as steady-state flux, lag time, and permeability coefficient. It has been shown that L-valine alkyl ester ibuprofenates, with the propyl, butyl, and amyl chain, exhibit a higher permeation rate than ibuprofen. The diffusion parameters of analyzed drugs through human skin and Strat-M® were similar and with good correlation. The resulting Pentravan-based creams with ibuprofen in the form of an ionic pair represent a potential alternative to other forms of the drug-containing analgesics administered transdermally. Furthermore, the Strat-M® membranes can be used to assess the permeation of transdermal preparations containing anti-inflammatory drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...